1,084 research outputs found

    Galaxy Clustering at z~3

    Get PDF
    Galaxies at very high redshift (z~3 or greater) are now accessible to wholesale observation, making possible for the first time a robust statistical assessment of their spatial distribution at lookback times approaching ~90% of the age of the Universe. This paper summarizes recent progress in understanding the nature of these early galaxies, concentrating in particular on the clustering properties of photometrically selected ``Lyman break'' galaxies. Direct comparison of the data to predictions and physical insights provided by galaxy and structure formation models is particularly straightforward at these early epochs, and results in critical tests of the ``biased'', hierarchical galaxy formation paradigm.Comment: Presented at Royal Society Discussion Meeting, March 1998, "Large Scale Structure in the Universe", 14 pages LaTeX, 7 ps figures, uses rspublic.sty (included

    High-energy Astrophysics and the Virtual Observatory

    Full text link
    The Virtual Observatory (VO) will revolutionise the way we do Astronomy by allowing easy access to all astronomical data and by making the handling and analysis of datasets at various locations across the globe much simpler and faster. I report here on the need for the VO and its status in Europe, concentrating on the recently started EURO-VO project, and then give two specific applications of VO tools to high-energy astrophysics.Comment: 12 pages, 3 figures, invited talk at the Workshop ``Multifrequency Behaviour of High Energy Cosmic Sources'', Vulcano, Italy, May 2005, F. Giovannelli et al., in pres

    The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey

    Get PDF
    Using the deep Spitzer Infrared Array Camera (IRAC) observations of the Great Observatories Origins Deep Survey (GOODS), we study the stellar masses and star formation histories of galaxies at z approx 6 based on the i_(775)-band dropout sample selected from the GOODS fields. In total, we derive stellar masses for 53 i_(775)-band dropouts that have robust IRAC detections. These galaxies have typical stellar masses of ~10^(10) M_⊙ and typical ages of a couple of hundred million years, consistent with earlier results based on a smaller sample of z ≈ 6 galaxies. The existence of such massive galaxies at z ≈ 6 can be explained by at least one set of N-body simulations of the hierarchical paradigm. We also study 79 i_(775)-band dropouts that are invisible in the IRAC data and find that they are typically less massive by a factor of 10. These galaxies are much bluer than those detected by the IRAC, indicating that their luminosities are dominated by stellar populations with ages ≾ 40 Myr. Based on our mass estimates, we derive a lower limit to the global stellar mass density at z ≈ 6, which is 1.1-6.7 × 10^6 M_⊙ Mpc^(-3). The prospect of detecting the progenitors of the most massive galaxies at yet higher redshifts is explored. We also investigate the implication of our results for reionization and find that the progenitors of the galaxies comparable to those in our sample, even in the most optimized (probably unrealistic) scenario, cannot sustain the reionization for a period longer than ~2 Myr. Thus most of the photons required for reionization must have been provided by other sources, such as the progenitors of the dwarf galaxies that are far below our current detection capability

    The Formation of the Hubble Sequence

    Full text link
    The history of galaxy formation via star formation and stellar mass assembly rates is now known with some certainty, yet the connection between high redshift and low redshift galaxy populations is not yet clear. By identifying and studying individual massive galaxies at high-redshifts, z > 1.5, we can possibly uncover the physical effects driving galaxy formation. Using the structures of high-z galaxies, as imaged with the Hubble Space Telescope, we argue that it is now possible to directly study the progenitors of ellipticals and disks. We also briefly describe early results that suggest many massive galaxies are forming at z > 2 through major mergers.Comment: 4 pages, 2 figures; "Multi-Wavelength Cosmology" conference, Mykonos (2004

    Direct evidence for an early reionization of the Universe?

    Full text link
    We examine the possible reionization of the intergalactic medium (IGM) by the source UDF033238.7-274839.8 (hereafter HUDF-JD2), which was discovered in deep {\it HST}/VLT/{\it Spitzer} images obtained as part of the Great Observatory Origins Deep Survey and {\it Hubble} Ultra-Deep Field projects. Mobasher et al (2005) have identified HUDF-JD2 as a massive (∼6×1011M⊙\sim6\times10^{11}M_\odot) post-starburst galaxy at redshift z≳6.5\gtrsim6.5. We find that HUDF-JD2 may be capable of reionizing its surrounding region of the Universe, starting the process at a redshift as high as z≈15±5\approx 15 \pm5.Comment: 6 pages, 2 figures. Accepted for publication in ApJ Letter
    • …
    corecore